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ABSTRACT 

Anterior cruciate ligament (ACL) injury, particularly in 
increasingly young and active adolescents, continues to 
pose a clinical challenge with re-injury rates reported as 
high as 30%. Evidence also suggests that current stan-
dard-of-care ACL reconstruction (ACLR) does not miti-
gate post-traumatic osteoarthritis (PTOA) risk. Bridge- 
enhanced ACL restoration (BEAR) is a recently developed 
and tested ACL surgery that promotes primary healing 
of the native ACL with excellent early results. BEAR has 
shown to reduce signs of early PTOA compared to ACLR 
in an animal model. Here, we describe a theoretical 
framework related to re-innervation that can clarify why 
the outcomes of ACLR and BEAR surgeries differ. We also 
discuss how ongoing and new challenges in determining 
return-to-sport readiness following the competing sur-
geries may differ, and how emerging imaging tools and 
measures of neuromuscular function may aid in clinical 
decision-making to decrease the likelihood of re-injury 
and PTOA risk. 
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THE ONGOING CLINICAL CHALLENGE  

OF TREATING ACL INJURY 

The anterior cruciate ligament (ACL) is one of the most 
frequently injured knee ligaments with up to 400,000 ACL 
tears occurring in the US annually.1,2 Of these occurrences, 
teenagers are the most at-risk population.3,4 This adolescent 
demographic presents a particularly challenging clinical 
problem as ACL tear increases the risk of post-traumatic 
osteoarthritis (PTOA), with up to 50–80% of these young 
patients developing symptomatic OA within 10 to 20 years 
of their injury.5-7 Given there are no known disease-modi-
fying therapies for PTOA, the injury leaves these typically 
young adults to manage their condition over most of their 
lifespan. Further, ACL re-injury is not uncommon and has 
been reported to be as high as nearly 30% in athletes under 
the age of 208 with subsequent inferior patient outcomes 
after graft failure.9 These observations underscore the need 
to identify mechanisms that modulate re-injury and PTOA 
risk following ACL tear and to augment current treatment 
strategies to improve patient outcomes.

PRIMARY REPAIR AS AN EMERGING  

TREATMENT FOR ACL INJURY 

Spontaneous healing of the ACL is rare and if left untreated, 
the knee is unstable with many patients unable to per-
form activities of daily living, let alone resume sports. ACL 
reconstruction (ACLR) is the current standard of care and 
involves drilling bone tunnels through the footprints of the 
ACL and replacing the torn ligament with a tissue graft har-
vested from elsewhere in the body. ACLR grossly restores 
knee stability and allows many patients to resume pre- 
injury activities, but the procedure does not mitigate PTOA 
risk10 or fully restore clinical, functional, and patient- 
reported outcomes (PROs).11-13 Reasons for these shortcom-
ings remain elusive with measures of knee laxity, patient 
demographics, societal factors, surgical treatment and 
the need for subsequent revision surgery explaining only 
10–20% of the variation in PROs in a multivariable regres-
sion analysis of nearly 1600 ACLR patients followed pro-
spectively for 10 years (NCT00478894).9 Thus, factors not 
yet fully captured by these clinical trials may be important 
modulators of long-term patient outcomes and joint health. 
Bridge-enhanced ACL restoration (BEAR), is a surgery that 
involves use of an FDA-cleared extracellular matrix sponge 
to create a stable blood clot that allows the torn ACL ends to 
reconnect through primary wound healing14 (Figure 1 A,B,C).

BEAR has several advantages over conventional ACLR, 
including the elimination of graft donor site morbidity asso-
ciated with autograft procedures (e.g., patellar tendon, ham-
string, and quadriceps tendon),16 and as we speculate here, 
the potential to preserve ACL mechanoreceptor machinery. 
Alongside restoration of the double bundle morphology of 
the native ACL, these distinguishing features may explain 
the more rapid and complete recovery of knee extensor and 
flexor strength and functional hop test performance follow-
ing BEAR compared to ACLR patients within the first two 
years after surgery.17,18 These differential responses were 
noted despite the presence of similar magnitudes of resid-
ual joint laxity between the competing surgeries. We believe 
that this observation points to the presence of mechanisms 
other than graft biomechanical function that modulate early 
patient outcomes.

INNERVATION AND PTOA RISK 

In developing the BEAR procedure, one of the exciting out-
comes observed in the animals that underwent BEAR was 
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that they had less cartilage damage – a hallmark of PTOA – 
compared to animals that underwent ACLR.15,19 Meanwhile, 
the biomechanical properties of the grafts and repaired 
ACLs were similar.15,19 Several subsequent pre-clinical stud-
ies have failed to identify biological modulators that might 
explain the differential cartilage outcomes observed by 12 
months in the animal models.20-22 Interestingly, hind limb 
loading was similar between the competing surgeries up 
to six months after surgery, but it diverged between 6–12 
months.23 This leads us to hypothesize that the functional 
divergence might reflect a different neuromuscular strategy 
conferred by the preservation of the mechanoreceptor anat-
omy that would occur with BEAR, but may not be present 
following ACLR because of the bone tunnel drilling required 
for graft placement and removal of the injured ligament. Evi-
dence from small animal models adds further support to this 
working hypothesis, whereby severe osteoarthritis develops 
when the mechanoreceptor signaling pathway in the knee 
is surgically ablated without disturbance to the intra-artic-
ular connective tissues.24 With respect to the ACL specifi-
cally, the native ACL contains mechanoreceptors25 with the 
majority located in the epiligament and bony insertions.26,27 
ACL mechanoreceptors – Ruffini corpuscules, Pacinian cor-
puscules, and Golgi-like tendon organs – relay afferent com-
munication about joint position and ligament tension to the 
central nervous system,28-30 whereas free nerve endings are 
believed to contribute primarily to nociception.31 However, 
debate remains as to which tissues (e.g., synovium, capsule, 
menisci)32 contribute to proprioceptive and nociceptive 
information.31 Nevertheless, a reflex arc exists between the 
ACL and hamstring muscles, that when elicited by direct 
mechanical tensioning33 or electrical stimulation of the 

ACL,34 hamstring contraction is triggered. Because ham-
strings are antagonists to anterior tibial translation35 – the 
direction of motion constrained primarily by the ACL36 – 
their activation under excessive ACL tension would off-load 
the ACL.37 This protective reflex arc is either absent38 or sig-
nificantly diminished following ACLR.34,39 Thus the inability 
of the central nervous system to accurately detect changes 
in ligament tension and respond would result in joint pro-
prioception deficits. Conversely, if BEAR restores the neural 
connectivity between the two torn ends of the ACL, its sen-
sory function may also be restored and would promote more 
normal neuromuscular and kinematic function. 

PERSISTENT ABNORMAL NEUROMUSCULAR 

FUNCTION AND KNEE KINEMATICS 

When faced with reduced afferent proprioceptive input 
and compromised spatial awareness of a limb due to ACL 
injury, individuals may experience challenges in actively 
constraining joint orientation through coordinated muscu-
lar contractions. This hypothesis builds on the longstand-
ing observations that ACLR patients demonstrate residual 
abnormal knee kinematics after surgery.40,41 Our recent work 
has shown that ACLR subjects land from a hop with their 
tibia positioned more anteriorly42-44 and that their neuro-
muscular function remains different from that of controls’ 
more than a decade after surgery.45-47 Greater anterior tib-
ial translation and more rapid sliding between contacting 
tibiofemoral surfaces have shown a direct and linear correla-
tive relationship to the amount of cartilage damage observed 
in a large animal model of ACL transection.48,49 Thus, if 
neuromuscular function does not adequately constrain this 

Figure 1. [A] Following ACL tear, [B] ACLR involves removing the ACL and replacing it with a tendon graft by drilling bone tunnels through the foot-

prints of the ACL so that the graft can be introduced into the joint. [C] BEAR is an alternative approach that uses a suture bridge through small bone 

tunnels drilled adjacent to ACL footprints to provide initial stability while the extracellular matrix sponge soaked with autologous blood creates a stable 

blood clot that promotes primary wound healing.  [FIGURE IS USED WITH PERMISSION FROM MURRAY AND FLEMING15]
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motion, PTOA onset could result. What is known from the 
animal models in terms of damaging contact mechanics and 
their relationship to PTOA dovetails the variable rate of 
PTOA onset observed clinically, with some ACLR patients 
remaining asymptomatic for decades while others develop 
early degenerative changes.5-7,9 ACLR and post-operative 
rehabilitation aim to target these structural and functional 
mechanisms thought to be mechanical drivers of PTOA risk, 
though they fail to do so in many patients.10

REHABILITATION AND RETURN-TO-SPORT 

(RTS) READINESS

Following either ACLR or BEAR surgery, the primary goal of 
rehabilitation is to diminish pain and swelling and to regain 
lower limb flexor and extensor muscle strength and func-
tion by implementing a progressive program that sequen-
tially targets knee range of motion, lower limb strength, and 
dynamic plyometrics.50,51 Despite following best practices 
and careful clinical oversight, evidence suggests that few 
patients pass all functional test criteria designed to inform 
RTS readiness.52 Alarmingly, re-injury rates as high as 30% 
within the first five years of injury have been reported.8 Of 
note, this statistic includes the risk of contralateral injury, 
which appears to be highest within the first year of index 
ACL injury.8 There is mounting evidence that peripheral 
and cortical processing changes indicative of central ner-
vous system reprogramming41 also occur during this two-
year post-injury time frame.53,54 Why these systemic changes 
occur is speculative, but because nature favors symmetry55 
we posit that the central nervous system may undergo a 
degree of reorganization to re-establish lower limb symme-
try. If the nervous system is undergoing a rapid state of flux 
by adapting both injured and contralateral limb function, it 
may heighten ACL injury risk already present because of 
underlying factors (e.g., posterior tibial slope, narrow notch 
width, ACL size, genetic susceptibility).56,57 To this point, 
our data demonstrate that neuromuscular47 and kinematic44 

function of the contralateral limb appear more similar to the 
ACL-injured limb of ACLR patients than those of healthy 
controls 10+ years after injury. The cross-sectional nature 
of that work precludes us from ascertaining whether these 
neuromuscular and kinematic differences were inherent to 
these patients and could reflect why they were injured to 
begin with; however, longitudinal studies by others suggest 
contralateral kinematics gradually change over time, dove-
tailing the movement patterns of the ACLR limb.58,59 In a 
similar vein, PROs likewise change rapidly over the first two 
years after ACLR before plateauing.9,11 Taken together, there 
appears to be a rapid period of local, systemic, and psycho-
logical adaptation before reaching a steady state at two years 
post-surgery. 

SPECIAL CONSIDERATIONS FOR BEAR PATIENT 

REHABILITATION AND RTS READINESS 

Preliminary clinical studies have demonstrated that BEAR 
patients are passing functional benchmarks earlier, have 
a more rapid and complete restoration of knee flexor and 
extensor strength, and report greater psychological readiness 
to RTS.17,18 This accelerated recovery following BEAR poses 
a new set of challenges for the rehabilitation team, whereby 
the patient may feel ready to engage in more dynamic activ-
ity, but the healing ACL may not be sufficiently remod-
elled to withstand the magnitude of tensile loading it may 
undergo, as preclinical studies suggest the healing ACL 
continues to gain tensile strength and stiffness up to 12 
months after repair.19 Further, there are temporal differ-
ences between the biological remodelling of an implanted 
tendinous graft and primary healing of the native ACL. The 
ACL graft undergoes “ligamentization”, during which it gets 
progressively weaker as it is revascularized before regaining 
ultimate tensile strength and stiffness as the collagen is 
remodelled; however, graft structural properties never fully 
recapitulate those of the native ACL with inferior graft stiff-
ness and diminished tensile strength.60 In the case of BEAR, 
the repair is weakest in the immediate postoperative period 
followed by a gradual increase in structural properties as the 
provisional synovial scaffold is remodelled into organized 
collagen.61 Work in animal models suggests that the func-
tional end point is ultimately the same between the com-
peting surgeries,15,19 but there is currently no consensus on 
how best to promote optimal functional healing following 
BEAR, neither tools or metrics capable of probing the struc-
tural properties of the ACL directly to monitor how they 
may respond to mechanical cues. There is thus an opportu-
nity to address these clinical gaps with novel metrics that 
capture the underlying biological healing processes and their 
relationship to neuromuscular function more directly. 

EMERGING TOOLS TO GAUGE RTS READINESS

Clinical exams, functional tests, and PROs are staples of 
clinical and research toolboxes used to judge the integrity of 
the implanted ACL graft and a patient’s overall physical and 
psychological readiness to RTS; however, they are poor pre-
dictors of re-injury risk.52 Using magnetic resonance imaging 
(MRI) to predict when the tissue would be able to withstand 
tensile forces associated with sport participation would be a 
valuable tool. Our research group has made progress towards 
this end,62-65 where we have shown its promise in predicting 
graft/ACL failure.62,66 Nevertheless, the imaging approach 
does not capture the role that the neuromuscular system may 
play in graft/ACL remodelling or contralateral injury risk.

Using conventional motion capture (MoCap) to determine 
joint kinematics and kinetics has provided insight into the 
functional recovery following ACLR,59 but has yet to identify 
the “smoking gun” between biomechanical abnormalities 
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and PTOA pathogenesis, possibly due to limitations associ-
ated with the accuracy67 required to record dynamic move-
ments that are most likely to be associated with greater 
re-injury risk, such as jump landings and cutting maneu-
vers.67 Common to all kinematic measures is that they are 
largely the result of neuromuscular function; capturing how 
muscles are activated, the quality of their contraction, and 
their coordination may be a more direct measure of neuro-
muscular changes and their potential differential response 
to ACLR versus BEAR, as well as contralateral injury risk.

The most common and least invasive way to acquire mea-
sures of muscular activation entails using surface electrodes 
placed over the muscle bellies of interest to record electro-
myography (EMG) signals. We have recently demonstrated 
that analysis of the frequency content of signals acquired 
from EMG provides rich information capable of distinguish-
ing subtle differences in muscle activation patterns between 
ACLR patients and healthy control subjects.46 Importantly, 
these differences were not detected in the same subjects 
using conventional EMG approaches that analyzed only the 
timing of muscle activation.45 Another important finding 
was that our approach additionally identified contralateral 
limb differences in ACLR patients,47 which could prove to 
be a useful metric for tracking systemic changes in neuro-
muscular function after ACL injury. With support from the 
Injury Control Center of Biomedical Research Excellence 
(COBRE) at Rhode Island Hospital, work is ongoing to deter-
mine the extent ACLR and BEAR neuromuscular activation 
patterns are different after two years of healing, and how they 
relate to knee kinematics and PROs. As the work matures 
and we learn more about the neuromuscular features that 
distinguish the two surgeries, we hope to develop a frame-
work that uses lower limb EMG-based machine learning to 
identify rehabilitation milestones that would have utility in 
determining RTS criteria. 

THE ROLE OF INFLAMMATION

It is worth noting that although we have focused on the 
structural and functional differences between ACLR and 
BEAR, it is possible that the molecular environment also 
plays an important role in the long-term risk of PTOA.68 As 
we eluded to earlier, several subsequent studies in the por-
cine model of ACLR and BEAR investigated whether pro-in-
flammatory cytokine concentrations and RNA expression 
in the synovium, synovial fluid, and articular cartilage dif-
fered between the competing surgeries.21,22,69-74 Two notable 
findings emerged: 1) there are no differences in the RNA 
transcriptome within the first four weeks post-op between 
the competing surgeries;22,69 2) inflammatory mediators and 
metabolic markers detectible in the synovial fluid are upreg-
ulated following only BEAR,70 and only by 12 months are 
differences in synovial fluid proteome detectible21 with a 
greater abundance of cytokines being chondroprotective.72  

It is also worth reiterating that the temporal emergence of 
the differential molecular outcomes parallels the emergence 
of a different gait strategy,23,72 which provides additional evi-
dence that neuromuscular control may play an important 
chondroprotective role and may even influence the molecu-
lar environment. These are ongoing topics of investigation.

SUMMARY 

Whereas ACLR continues to be a successful surgery inso-
far as it restores gross knee structure and stability following 
ACL tear, it may not restore the native ligament’s neural 
connectivity and the more fine-tuned neuromuscular con-
trol necessary to fully recapitulate pre-injury function. 
BEAR is an emerging surgical approach that may preserve 
mechanoreceptor function and in-turn promote a more com-
plete neuromuscular and kinematic recovery that mitigates 
PTOA risk. Emerging tools being developed in the research 
setting offer promise towards providing insight into the 
functional status of the healing ACL and the neuromuscular 
system with the goal of reducing re-injury risk and augment-
ing the clinician’s ability to guide RTS decision-making  
following ACL surgery. 
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