F18-FDG PET/CT Diagnoses Vasculitis after a Negative Indium-111 Leukocyte Scan

JING WANG, MD; DON C. YOO, MD; ELIZABETH H. DIBBLE, MD

ABSTRACT

We present a case of a 38-year-old man with a prior episode of fever of unknown origin (FUO) four years ago who presented with acute severe dull nonradiating abdominal pain centered in the epigastric region associated with nausea and vomiting. Bloodwork showed a normal leukocyte count but elevated erythrocyte sedimentation rate of 26 and elevated C-reactive protein of 40; syphilis titers and anti-neutrophil cytoplasmic antibodies (pANCA and cANCA) were negative. CT angiogram (CTA) of the abdomen and pelvis showed diffuse medium vessel vascular inflammation. Indium-111 labeled leukocyte scan did not show evidence of infection and, specifically, no evidence of infectious vasculitis. Subsequent F18-FDG PET/CT scan showed diffuse uptake in the mesenteric vasculature in the area of abnormality seen on prior contrast-enhanced CT and confirmed the diagnosis of vasculitis, subsequently deemed by rheumatology to be most consistent with segmental arterial mediolysis.

INTRODUCTION

F18-FDG PET/CT is primarily used for oncologic imaging; however, mechanisms of F18-FDG uptake by tumor cells that leads to their visualization on F18-FDG PET/CT – increased expression of facultative GLUT transporters and increased expression of glycolytic enzymes – also occur in inflammatory and granulation tissues. Because of this, F18-FDG PET/CT is being used increasingly to evaluate infectious and inflammatory conditions. We present a case that illustrates the use of F18-FDG PET/CT in the workup of infection and inflammation, specifically, in a young man with vasculitis.

CASE REPORT

A 38-year-old man with a prior episode of fever of unknown origin (FUO) four years ago presented to the emergency department with 10/10 abdominal pain associated with nausea and vomiting. The abdominal pain started 1 day ago, was centered in the epigastric region and was nonradiating, better lying down, and worse sitting up. Bloodwork showed a normal leukocyte count but elevated erythrocyte sedimentation rate of 26 and elevated C-reactive protein of 40; syphilis titers and anti-neutrophil cytoplasmic antibodies (pANCA and cANCA) were negative.

CT angiogram (CTA) of the abdomen and pelvis showed diffuse inflammation and thickening of the superior mesenteric artery (SMA) wall and its branches (medium-sized vessels) highly suspicious for vasculitis. In addition, the patient had pseudoaneurysms of the SMA and an acute SMA dissection. The differential diagnosis included segmental arterial mediolysis, connective tissue disease, and infectious and inflammatory vasculitides. The patient had no family history or other signs of connective tissue disease.

Figure 1. Axial (A), coronal (B), and sagittal (C) images from abdomen/pelvis CTA show diffuse inflammation and thickening of the superior mesenteric artery (SMA) wall (red arrows) and its branches highly suspicious for vasculitis.
The patient had recently completed a course of steroids for poison ivy and thus was mildly immune compromised; in addition, the apparent distribution of involvement together with pseudoaneurysms and dissection are unusual for inflammatory vasculitides. 111-Indium labeled leukocyte study was performed to evaluate for infectious vasculitis. The study was normal [Figures 2 and 3]. Subsequent CTA of neck and chest [not shown] was performed to assess for evidence of a larger vessel vasculitis and was negative.

Because of the negative neck and chest CTA and negative labeled leukocyte scan, F18-FDG PET/CT was performed to assist in diagnosis, evaluate extent of involvement, and help decide whether to initiate immunosuppressive agents. PET/CT images showed diffuse increased uptake in the mesenteric vasculature, and more focal intense uptake in the SMA in the area of abnormality seen on prior contrast-enhanced CT [Figure 4]. The patient was diagnosed with diffuse inflammatory vasculitis, not otherwise specified, and started on corticosteroids. His abdominal pain improved, and he was discharged with outpatient rheumatology follow-up. Upon further genetic testing and clinical evaluation, rheumatology deemed the diagnosis most likely segmental arterial mediolysis.

Figure 2. Anterior (left image) and posterior (right image) whole body planar images from 111-Indium labeled leukocyte scan were normal.

Figure 3. Maximum intensity projection Indium-111 labeled leukocyte scan image (A) and axial, coronal, and sagittal Indium-111 labeled leukocyte SPECT, (B-D, respectively) and fused SPECT/CT images (E-G, respectively) show no increased uptake in the region of the SMA (red arrows) in the area of abnormality seen on prior contrast-enhanced CT.
DISCUSSION

F18-FDG PET/CT has a sensitivity for vasculitis ranging from 77%–92%\(^4,5\) versus Indium-111 tagged leukocyte scintigraphy’s sensitivity of 25%.\(^6\) In addition, F18-FDG uptake correlates with elevated levels of inflammatory markers\(^7,8\) and can detect metabolic abnormalities in vessels prior to morphologic changes visible on conventional anatomic imaging.\(^9,10\) In a study evaluating FUO, F18-FDG PET/CT had a sensitivity of 86% while Indium-111 leukocyte scintigraphy had a sensitivity of 20%\(^11\). F18-FDG PET/CT performed at the time of this patient’s prior episode of FUO may have prevented a hospital admission. In addition to assisting with diagnosis, F18-FDG PET/CT can evaluate progression and treatment response in vasculitis.\(^12\)

F18-FDG PET/CT can also yield cost benefits relative to labeled leukocyte scintigraphy. While labeled leukocyte scintigraphy and F18-FDG PET/CT can both detect infection and inflammation, the radiopharmaceutical cost for a single dose of radiolabeled leukocytes is approximately seven times more expensive than the cost of a single dose of F18-FDG.\(^13\)

Segmental arterial mediolysis (SAM) is a rare cause of vasculitis that is not considered a true inflammatory vasculitis; rather, inflammatory cells are inconsistently present and considered secondary to the disease itself.\(^14\) SAM is defined by disruption of the arterial medial layer. SAM typically is not as diffuse as was this patient’s vasculitis; however, aneurysms and dissections are common, as is medium sized artery involvement. The uptake on F18-FDG PET/CT is likely due to the secondary inflammation caused by disruption of the arterial medial layer.

CONCLUSION

F18-FDG PET/CT is useful in the workup of infectious and inflammatory conditions and, specifically, can be helpful in diagnosing vasculitides including the rare vasculitis segmental arterial mediolysis.

References

Authors
Jing Wang, MD, The Warren Alpert Medical School of Brown University, Providence, RI.
Don C. Yoo, MD, Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI.
Elizabeth H. Dibble, MD, Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI.

Correspondence
Elizabeth H. Dibble, MD
Department of Diagnostic Imaging
Rhode Island Hospital
593 Eddy Street
Providence, RI 02903
401-444-5184, x297
Fax 401-444-5017
dibble@lifespan.org