Concussions: A Primer for the Physician

NEHA RAUKAR, MD; LINDA CHAO, MD’16

Concussions have garnered much attention in recent years and are recognized as having far reaching and potentially permanent consequences. They often cause significant and sustained neuropsychological impairments in information-processing speed, problem solving, planning, and memory, and these impairments are worse with multiple concussions. This is best demonstrated in athletes, a population of patients at greatest risk for repeated head injuries. In fact, concussions are the most common head injury sustained by athletes; 8.9% of all high school sports injuries reported are concussions and account for 19% of all non-fatal injuries in football. The incidence of concussion among American teen athletes has grown from 300,000 incidents annually 10 years ago to upward of three million cases now. The increase is likely due to the increased awareness by the sports community, leading to greater recognition and reporting. It is unclear if changes in rules and protective equipment has changed incidence.

Nonetheless, these figures underestimate the frequency of concussions, as those with minor head injuries are often unlikely to seek care. In a survey by the Associated Press in 2009, it was found that at the professional level, nearly one-fifth of 160 NFL players had hidden or downplayed the effects of their concussions. Athletes fear being removed from play and letting teammates down. Coaches, sideline personnel, and athletes themselves often do not recognize their own symptoms as a concussion. According to a McGill University study, 70.4% of athletes surveyed retrospectively reported experiencing the symptoms of a concussion during the past year, but only 23.4% realized that they had sustained a concussion in real time. The study also found that 84.6% of athletes with a concussion had actually experienced more than one concussion. Part of the dilemma in diagnosing concussions is that the definition itself has been evolving. At this time, the most accepted definition of concussion is a clinical one, introduced in 2001.

Concussion is defined as a complex pathophysiological process affecting the brain, induced by traumatic biomechanical forces. Several common features that incorporate clinical, pathologic and biomechanical injury constructs that may be utilized in defining the nature of a concussive head injury include:

1. Concussion may be caused either by a direct blow to the head, face, neck or elsewhere on the body with an “impulsive” force transmitted to the head.

2. Concussion typically results in the rapid onset of short-lived impairment of neurologic function that resolves spontaneously.

3. Concussion may result in neuropathological changes, but the acute clinical symptoms largely reflect a functional disturbance rather than a structural injury.

4. Concussion results in a graded set of clinical symptoms that may or may not involve loss of consciousness. Resolution of the clinical and cognitive symptoms typically follows a sequential course; however, it is important to note that, in a small percentage of cases, post-concussive symptoms may be prolonged.

5. No abnormality on standard structural neuroimaging studies is seen in concussion.

Contrary to popular belief, loss of consciousness is not required for the diagnosis of a concussion. In fact fewer than 10% of concussions include a loss of consciousness.

Post-concussive syndrome, a constellation of symptoms seen after a head injury, is defined by the World Health Organization as starting at 3 months after the injury. Until this time, symptoms reported by the athlete are referred to as “concussive symptoms.”

SEQUELAE

The most feared complication of a concussion is second impact syndrome. This rare condition occurs when a second impact is sustained before the brain has recovered from the first concussion. This has only been reported in children and can be catastrophic. Those who survive are often left permanently disabled. By 2003, 21 deaths had been attributed to second impact syndrome.

Psychiatric sequelae of mild traumatic brain injury include dementia, depression, and early onset of Alzheimer’s and other memory-related diseases. A 2005 UNC Chapel Hill survey of 2,550 retired professional football players found that 61% had experienced at least one concussion during their career, with 24% experiencing at least 3 concussions, and that this population had a significantly earlier onset of Alzheimer’s disease than the general male population. Another survey of 1,063 retired NFL players found that 6.1% of players age 50 and older had been diagnosed with a dementia-related condition, while age matched controls had...
Concussions have been recognized to result from a confluence of head acceleration, sheer force, and rotational deformity. The signs and symptoms of concussion are related to a metabolic dysfunction in the inferior parietal, prefrontal, and cingulate cortex. Decreased cerebral blood flow, hypermetabolic state with increases in glycolysis, glutamate-induced excitotoxicity, and abnormal cellular ionic fluxes occurring after a concussion all contribute to the dysfunction. Because a concussion is a functional disturbance rather than a structural one, there are no gross changes on CT and MRI.

PATHOPHYSIOLOGY

Concussions have been recognized to result from a confluence of head acceleration, sheer force, and rotational deformity. The signs and symptoms of concussion are related to a metabolic dysfunction in the inferior parietal, prefrontal, and cingulate cortex. Decreased cerebral blood flow, hypermetabolic state with increases in glycolysis, glutamate-induced excitotoxicity, and abnormal cellular ionic fluxes occurring after a concussion all contribute to the dysfunction. Because a concussion is a functional disturbance rather than a structural one, there are no gross changes on CT and MRI.

DIAGNOSIS AND MANAGEMENT

Acutely, a thorough neurologic exam should be done either on the sideline, in the Emergency Department, or in the primary care office. The history should probe the presence and severity of symptoms commonly seen in concussion, as well as eliciting a brief history of prior head injuries. Symptoms of a concussion usually fall in one or more of six categories: cognitive, physical, emotional, balance and vestibular, visual, and sleep.

The cohort of patients that requires urgent neurologic imaging is not well defined. From the sideline, patients with a concerning physical exam or deteriorating neurologic status should be emergently transported to the Emergency Department. The goal of imaging is not to diagnose a concussion, but rather to exclude more life-threatening brain injuries, including skull fractures, intracranial hemorrhage and parenchymal contusion. The American College of Emergency Physicians has published guidelines to help identify those patients who require imaging after sustaining a blunt head injury. [http://www.acep.org/Clinical---Practice-Management/Revised-Clinical-Policy--Neuroimaging-and-Decisionmaking-in-Adult-Mild-TBI-in-Acute-Settings/]

Once the athlete is asymptomatic and clinical examination, balance and neurocognitive test scores normalize, he or she may be considered for physical reintegration. This involves a graded return to play as described in the Prague/Zurich guidelines. The student athlete represents a special population that also requires cognitive reintegration. No guidelines exist regarding cognitive reintegration and often this is done in collaboration with the athlete, the parents, and the school.
THE LAW

Inspired by Zackery Lystedt, in 2011, Rhode Island, along with all of the other states, enacted a youth sports concussion-related law. While the details vary slightly from state to state, the goal of the law is to treat our high school athletes as formally and aggressively as we do our professional athletes. Patients who will be putting themselves at risk for another head injury, i.e. athletes, require documentation stating that they have recovered from their concussion. Optimally, evaluation and return to learn and play decisions should be managed by an individual with experience in managing sports-related concussions.

In June 2014, the law was expanded requiring school nurses to obtain education regarding the signs and symptoms of a concussion. Because cognitive activity can exacerbate the symptoms of a concussion, school nurses are poised to identify those who have a delayed presentation of their concussion.

For further information, visit the Heads Up program website, an online resource developed by the CDC to help educate medical professionals, coaches and parents about concussions: http://www.cdc.gov/concussion/HeadsUp/youth.html.

FUTURE DIRECTION

The area of concussion research has exploded in Rhode Island and nationally. Please refer to the May 2014 RIMJ to find out about projects being conducted in Rhode Island, available at: http://www.rimed.org/rimedicaljournal/2014/05/2014-05.pdf

Graded return to play protocol: from “Consensus statement on concussion in sport: the 3rd International Conference on Concussion in Sport.”

<table>
<thead>
<tr>
<th>Rehabilitation stage</th>
<th>Functional exercise at each stage of rehabilitation</th>
<th>Objective of each stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. No activity</td>
<td>Complete physical and cognitive rest.</td>
<td>Recovery</td>
</tr>
<tr>
<td>2. Light aerobic exercise</td>
<td>Walking, swimming or stationary cycling keeping intensity < 70% MPHR</td>
<td>Increase HR</td>
</tr>
<tr>
<td>3. Sport-specific exercise</td>
<td>Skating drills in ice hockey, running drills in soccer.</td>
<td>Add movement</td>
</tr>
<tr>
<td>4. Non-contact training drills</td>
<td>Progression to more complex training drills e.g. passing drills in football and ice hockey. May start load progressive resistance training</td>
<td>Exercise, coordination, and cognitive development</td>
</tr>
<tr>
<td>5. Full contact practice</td>
<td>Following medical clearance participate in normal training activities</td>
<td>Restore</td>
</tr>
<tr>
<td>6. Return to play</td>
<td>Normal game play</td>
<td></td>
</tr>
</tbody>
</table>

References

Authors

Neha Raukar, MD, MS, FACEP, The Center for Sports Medicine, Department of Emergency Medicine and Assistant Professor, Emergency Medicine, The Warren Alpert Medical School of Brown University.

Linda Chao, MD’16, The Warren Alpert Medical of Brown University.

Correspondence

Neha Raukar, MD
University Emergency Medicine Foundation
55 Claverick Street
Providence, RI 02903
Neha_raukar@brown.edu